Exercise 73

The water level, measured in feet above mean sea level, of Lake Lanier in Georgia, USA, during 2012 can be modeled by the function

$$
L(t)=0.01441 t^{3}-0.4177 t^{2}+2.703 t+1060.1
$$

where t is measured in months since January 1, 2012. Estimate when the water level was highest during 2012.

Solution

The domain of the function is $0 \leq t \leq 11$. Take the derivative.

$$
\begin{aligned}
L^{\prime}(t) & =\frac{d}{d t}\left(0.01441 t^{3}-0.4177 t^{2}+2.703 t+1060.1\right) \\
& =0.01441\left(3 t^{2}\right)-0.4177(2 t)+2.703(1)+1060.1(0) \\
& =0.04323 t^{2}-0.8354 t+2.703
\end{aligned}
$$

Set $L^{\prime}(t)=0$ and solve for t.

$$
\begin{gathered}
0.04323 t^{2}-0.8354 t+2.703=0 \\
t=\frac{0.8354 \pm \sqrt{0.8354^{2}-4(0.04323)(2.703)}}{2(0.04323)} \\
t=15.2151 \text { months } \quad \text { or } \quad t=4.10948 \text { months }
\end{gathered}
$$

$t=4.10948$ is within the interval $0 \leq t \leq 11$, so evaluate the function here.

$$
\begin{aligned}
L(4.10948) & =0.01441(4.10948)^{3}-0.4177(4.10948)^{2}+2.703(4.10948)+1060.1 \\
& \approx 1065.15 \mathrm{ft} \quad(\text { absolute maximum })
\end{aligned}
$$

Evaluate the function at the endpoints.

$$
\begin{aligned}
L(0) & =0.01441(0)^{3}-0.4177(0)^{2}+2.703(0)+1060.1=1060.1 \mathrm{ft} \\
L(11) & =0.01441(11)^{3}-0.4177(11)^{2}+2.703(11)+1060.1 \approx 1058.47 \mathrm{ft} \quad \text { (absolute minimum) }
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $0 \leq t \leq 11$. Therefore, the water level was highest 4.10948 months after January 1, 2012, which was on May 3, 2012.

The graph below illustrates these results.

